Day 3: Missing Data in Longitudinal and Multilevel Models

by Levente (Levi) Littvay
Central European University
Department of Political Science
levente@littvay.hu
Multilevel and Longitudinal Models

• Longitudinal SEM (Latent Growth Curve)
 – Structural Equation Models
 – Most approaches that work with SEMs work
 – There are model size and identification issues
 – (Traditionally use) Direct Estimation

• Multilevel / Mixed / Random Effect Models
 – Pattern problems
 – Level problems
 – What to model and what not to model issues
 – (Traditionally use) Imputation
Missing Data in Longitudinal Structural Equation Models
Missing Data in SEMs

- Same approaches work
- Direct Estimation
 - More Common Approach
 - Missing can only be on the DV
 (usually not an issue with longitudinal models)
- Imputation
 - Can impute with an unstructured model
 - AMOS can impute using the analysis model
 (If no missing on the exogenous variables)
Longitudinal SEM

- Example - Latent Growth Curve
- It is just a structural equation model
- All observed variables are DVs

from Mplus Manual (ex 6.1)
Auxiliary Variables

• Just include them as you would otherwise
 – MI: include them in the imputation model
 – Direct estimation: correlate them with each other and all other observed variables

• Practical Issues
 – Can get out of hand
 • Imputation: Convergence + Model Size
 • Direct Estimation: Model Size + Convergence
 – Identification issues correlation of ~1 is not a unique information in the correlation matrix
 – Could collapse (if it still informs missingness)
Planned Missing

• Rolling Panel
 – You return to each person twice
 – You measure over a longer period of time
 – Can reduce panel effect

– Always test power and convergence
Attrition

• If attrition is MAR you are fine
 – Ask questions like how likely are you to come back next time. etc.

• If not NMAR you are not fine
Extension of the Heckman Model

• The analytical model is estimated simultaneously with the model of missingness
• Mplus Mailing List (Moh-Yin Chang - SRAM)
• Model Dropout (with a Survival Model) simultaneously with the Longitudinal Model
• Let Residuals Correlate
• Pray that it Runs
Multilevel Models
Stacked Dataset Patterns
Example (My Dissertation)

• Over time data on 186 countries (1984-2004)
• Item Missing (Hungary Trade Volume 1991)
• A variable missing for a whole country
 (Had corruption data for 143 countries.)
• No data at all on Afghanistan, Cuba and North Korea (Unit Missing?)
• No data on energy consumption for 2004
• No data on West Germany after 1989
 (Should that even be treated as missing?)
MLM Missing Data

• You are OK with MAR missing on the DV

• You are OK with MAR wave missing
 – But if you have any information on the wave it will not be incorporated in the model
 – It is better to incorporate all info to help satisfy the MAR assumption
Multiple Imputation for Multilevel Models
MLM Imputation Procedures

• OK for Level 1 Missing Data
 – PAN (Schafer, Bayesian, S-Plus/R module)
 – MIWin (Implemented Schafer’s PAN - Better)
 – WinMICE (Chained Equations)
 – Amelia II (Not true multilevel model)

• Upcoming: Shrimp (Yucel)
Imputation Model (Level 1)

• Thinking about the missing data model for multilevel models. (Conceptually Difficult)
 – Conventional Wisdom: Missing data model should be the same as the analysis model plus auxiliary variables.
 – Unstructured Model

• Issues
 – Inclusion of random effects for aux variables
 – Centering
 – Interactions
Bayesian Convergence

- Markov Chain Monte Carlo
- Random Walk Simulation
- Problem of autoregressive behavior
- Independent random draws produce the “posterior distribution” that imputations are sampled from.
- Bayesian convergence is in the eye of the beholder. No standard rules.
Ocular Shock Test of Convergence

- Well Implemented in MI software
- Has to be evaluated for all estimated parameters (this really sucks)
- Two Plots to Assess:
 - Parameter Value Plot
 - Autocorrelation Function Plot
- Be careful about the range of assessment
- Worst linear function - lucky if available
Quickly Converging Model

Series: worst linear function of parameters

Sample autocorrelation function (ACF)
Slowly Converging Model
Pathological Situation
No Convergence
Did Not Yet Reach Convergence
Pseudo Multilevel Model

• Random Effect of the Intercept
 – Dummies for each level 1 unit (but one)
 – Pro: no distributional assumption of the variance of the intercept
 – Con: eats up degrees of freedom

• Random Effects of slopes
 – Interaction between the above dummy and the independent variable
 – Same pros and cons

• Same can be done with imputation model
 – Impact of ignoring random effects?
Level 2 missing (sucks)

• If you do Schafer suggests the following
 – Collapse your level 1 variables by averaging across your level 2 units
 This produces a single level dataset
 – Impute the single level dataset 10 times (Use a single level procedure)
 – Take the 10 level 2 datasets remerge them with the level 1 data (exclude?)
 – Impute level 1 missing once for each 10 using a multilevel imputation technique

• Assumptions of this approach (iterative?)
MI Support in Software

- HLM and Mplus
- Maybe Stata (clarify, micombine - ?,?)
- Maybe R (zelig - ?)
- MIWin can do imputation
 May also combine (possibly with hacking)
Rubin’s Rules

• Combining results is still easy
• Use NORM like for single dataset
• One point of confusion is random effects
• But they also have parameter estimates and standard errors
• Combine like you combine coefficients and standard errors
• Don’t forget about the error covariances
Direct Estimation of Multilevel Models
Direct Estimation of MLMs

• It is computationally intensive (requires numerical integration)
• Level 1 missing seems OK
• Missing IVs: make IVs into DVs
• Problem of auxiliary variables
Implementation

• In Mplus
 – Same as with SEM models
 – Multilevel SEM model
 – Downside: limited to unstructured error covariance matrix. (No AR1 band-diagonal)

• Mplus does level 2 missing with monte-carlo integration
 – Unstable

• MIWin’s multilevel factor analysis (??)
Practical Considerations

• Getting good starting values
 – Really easy for most models
 – Run the model with all complete cases
 – Take results and use as starting values
 – Tedious, but worth it